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Abstract

In this paper, we present and analyze a new mixed local discontinuous Galerkin (LDG) method for a class of non-

linear model that appears in quasi-Newtonian Stokes fluids. The approach is based on the introduction of the flux and

the tensor gradient of the velocity as further unknowns. In addition, a suitable Lagrange multiplier is needed to ensure

that the corresponding discrete variational formulation is well posed. This yields a two-fold saddle point operator equa-

tion as the resulting LDG mixed formulation, which is then reduced to a dual mixed formulation. Applying a nonlinear

version of the well known Babuška–Brezzi theory, we prove that the discrete formulation is well posed and derive the

corresponding a priori error analysis. We also develop a reliable a-posteriori error estimate and propose the associated

adaptive algorithm to compute the finite element solutions. Finally, several numerical results illustrate the performance

of the method and confirm its capability to localize boundary and inner layers, as well as singularities.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays, the discontinuous Galerkin (DG) methods are widely used to solve diverse problems in phys-

ics and engineering sciences (see [1] and the references therein for an overview). This is mainly due to the

fact that no interelement continuity is required for these methods, which is attractive to be analized in the

frame of h, p and h � p versions. Indeed, there are many applications of these approaches to different kind
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of linear elliptic problems, such as the Stokes, Maxwell and Oseen equations (see, e.g., [10–12,22]). The

utilization of DG methods to numerically solve nonlinear boundary value problems has been considered

only lately, and to the best of our knowledge, the first results in this direction can be found in [7,18]. More

precisely, we developed in [7] the extension of the local discontinuous Galerkin (LDG) method to a class of

nonlinear diffusion problems, whereas the extension of the interior penalty hp DG method to quasilinear
elliptic equations was studied in [18].

On the other hand, in connection with a-posteriori error analysis for discontinuous Galerkin methods,

we first refer to [3,23], where residual estimators for the L2-norm of the error and implicit estimators based

on local problems for the energy norm of the error, are provided. In addition, a residual-based reliable

a-posteriori error estimate for a mesh dependent energy norm of the error is presented in [2] for a general

family of discontinuous Galerkin methods. The procedure from [2], which is valid for any other conserva-

tive method, relies on a Helmholtz decomposition of the gradient of the error and applies to nonconvex

polyhedra domains in two and three dimensions. More recently, we derived in [6] a new explicit and reliable
a posteriori error estimate for the LDG applied to second order elliptic equations in divergence form,

including the nonlinear diffusion problems studied in [7]. Similarly as in [2], our analysis there makes use

of Helmholtz decompositions, but in contrast to that work, which requires certain polynomial behavior

of the Dirichlet datum, we just need to consider a suitable piecewise polynomial function interpolating that

boundary condition.

In the present paper, we are interested in the a-priori and a-posteriori error analyses of the LDG method

as applied to certain type of nonlinear Stokes models, whose kinematic viscosities are nonlinear monotone

functions of the gradient of the velocity. In order to define the boundary value problem explicitly, we first
let X be a bounded open subset of R2 with Lipschitz continuous (polygonal) boundary C. Then, given
f 2 [L2(X)]2 and g 2 [H1/2(C)]2, we look for the velocity u := (u1,u2)

t and the pressure p of a fluid occupying

the region X, such that
� divðwðjrujÞru� pIÞ ¼ f in X;

div u ¼ 0 in X and u ¼ g on C;
ð1:1Þ
where div and div are the usual vector and scalar divergence operators, $u is the tensor gradient of u,

j Æ j is the euclidean norm of R2, I is the identity matrix of R2�2, and w : Rþ ! Rþ is the nonlinear kine-

matic viscosity function of the fluid. We remark that, as a consequence of the incompressibility of the

fluid, the Dirichlet datum g must satisfy the compatibility condition �Cg Æ m = 0, where m is the unit

outward normal to C. Hereafter, given any Hilbert space S, we denote by S2 and S2· 2 the spaces

of vectors and tensors of order 2, respectively, with entries in S, provided with the product norms in-

duced by the norm of S. Also, for tensors r :¼ ðrijÞ; s :¼ ðsijÞ 2 R2�2, and vectors v :¼ ðv1; v2Þt;
w :¼ ðw1;w2Þt 2 R2, we use the standard notation r : s :¼

P2

i;j¼1rijsij, and denote by v � w the tensor

of order 2 whose ijth entry is viwj. Note that the following identity holds: v Æ (rw) =
r:(v � w).

We now let wij : R
2�2 ! R be the mapping given by wijðrÞ :¼ wðjrjÞrij 8r :¼ ðrijÞ 2 R2�2; 8i; j 2 f1; 2g,

and define the tensor w : R2�2 ! R2�2 by wðrÞ :¼ ðwijðrÞÞ 8r 2 R2�2. Then, throughout this paper we as-

sume that w is of class C1 and that there exist C1,C2 > 0 such that for all r := (rij), s :¼ ðsijÞ 2 R2�2, there
hold
jwijðrÞj 6 C1krkR2�2 ;
o

orkl
wij

���� ���� 6 C1 8i; j; k; l 2 f1; 2g ð1:2Þ
and
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X2

i;j;k;l¼1

o

orkl
wijðrÞsijskl P C2ksk2R2�2 : ð1:3Þ
It is important to recall here that the nonlinear model (1.1) for fluids with large stresses was first studied

in [21] by using a dual-mixed variational formulation based on inverting the relation ~r ¼ wðjrujÞru to ob-

tain $u as an explicit function of ~r. We remark, however, that this procedure cannot be applied in all cases

since such explicit inversion formula is not always available. Certainly, one could also deal with (1.1) with-
out requiring the inversion of that relation, by applying the usual primal-mixed variational formulation

(see, e.g. [17] for the well known linear case). Nevertheless, in this setting the velocity u lives in the space

[H1(X)]2, and hence the corresponding finite element subspace needs to be a subset of the continuous func-

tions. In addition, the Dirichlet boundary condition, being essential and non-homogeneuous, will necessar-

ily lead to a non-conforming Galerkin scheme.

On the other hand, a dual-mixed formulation of (1.1) not requiring any inversion procedure, and

based on low-order finite element subspaces (Raviart–Thomas spaces of order zero to approximate the

flux, and piecewise constants to approximate the other unknowns), is proposed in [13,14]. The variables
t := $u and r := w(t) � pI, as well as a Lagrange multiplier n, are introduced there as auxiliary unknowns,

which yields the continuous formulation: Find ðt; r; p; u; nÞ 2 ½L2ðXÞ�2�2 � Hðdiv;XÞ � L2ðXÞ�
½L2ðXÞ�2 � R such that
Z

X
wðtÞ : s�

Z
X
r : s�

Z
X
p trðsÞ ¼ 0;

�
Z
X
s : t�

Z
X
q trðtÞ �

Z
X
u � divðsÞ þ n

Z
X
trðsÞ ¼ �hsm; giC;

�
Z
X
v � divðrÞ þ g

Z
X
trðrÞ ¼

Z
X
f � v

ð1:4Þ
for all ðs; s; q; v; gÞ 2 ½L2ðXÞ�2�2 � Hðdiv;XÞ � L2ðXÞ � ½L2ðXÞ�2 � R.

At this point, we observe that the usual Stokes model is obtained when wðrÞ ¼ w0r 8r 2 R2�2, where

w0 is the constant viscosity of a fluid. The application of the LDG method to this linear problem in the

classical velocity–pressure formulation, including the derivation of a priori error estimates for h � p

approximations, has been studied in [12,25]. The main advantages of the LDG approach, as compared

to the primal-mixed and dual-mixed finite element schemes, are the high order of approximation pro-

vided, the high degree of parallelism involved, and, as already mentioned, the suitability for h, p, and

h � p refinements (because of the use of arbitrary polynomial degrees on different finite elements). The

main disadvantage, however, is the consequent increase of the number of unknowns of the corresponding

discrete systems.

In this work, we extend the analysis developed in [7,25], and apply the mixed LDG approach to solve

(1.1). We consider regular and conforming meshes made up of straight triangles, and avoid the zero mean
value condition on the pressure by means of a suitable Lagrange multiplier. The rest of the paper is orga-

nized as follows. In Section 2 we introduce the full mixed local discontinuous Galerkin scheme, which in-

cludes the definition of the corresponding numerical fluxes and the reduced mixed formulation. In Section 3

we show the unique solvability of the mixed LDG scheme and derive the Céa-type error estimates. In con-

trast to the analysis presented in [13], we only need piecewise discontinuous polynomials to approximate the

unknowns. The usual a-priori error estimates in energy and L2 norms are proved in Section 4. Next, in Sec-

tion 5 we follow the approach given in [19] and deduce an a-posteriori estimate for the error measured in

the energy norm. Finally, some numerical experiments validating the good performance of the associated
adaptive algorithm are reported in Section 6. We even consider here meshes with hanging nodes, whose

analysis is not covered yet by the present theory.
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2. The mixed LDG formulation

We follow [13] and introduce the tensor gradient t := $u in X, and the flux r := w(t) � pI in X as addi-

tional unknowns. Since div u = tr($u), the incompressibility condition can be rewritten as tr(t) = 0 in X. In
this way, (1.1) can be reformulated as the following problem in �X: Find (t, r, u, p) in appropriate spaces such

that, in the distributional sense,
t ¼ ru in X; r ¼ wðtÞ � pI in X; �div r ¼ f in X;

trðtÞ ¼ 0 in X; and u ¼ g on C:
ð2:1Þ
As in [7], we now let Th be a shape-regular triangulation of �X made up of straight triangles T with diam-

eter hT and unit outward normal to oT given by mT. As usual, the index h also denotes h :¼ maxT2ThhT . In
addition, we define the edges of Th as follows. An interior edge of Th is the (non-empty) interior of

oT \ oT 0, where T and T 0 are two adjacent elements of Th. Similarly, a boundary edge of Th is the

(non-empty) interior of oT \ C, where T is a boundary element of Th. We denote by EI and ED the union

of all interior and boundary edges, respectively, of Th, and set E :¼ EI [ ED the union of all edges of Th.

Further, for each edge e � E, he represents its length. Also, in what follows we assume thatTh is of bounded

variation, that is there exists a constant l > 1, independent of the meshsize h, such that l�1
6

hT
hT 0

6 l for each
pair T ; T 0 2 Th sharing an interior edge.

The LDG variational formulation is described next. We first multiply the first fourth equations of (2.1)
by smooth test functions s, s, v and q, respectively, integrate by parts over each T 2 Th, and obtain
Z

T
wðtÞ : s�

Z
T
r : s�

Z
T
p trðsÞ ¼ 0;Z

T
t : sþ

Z
T
u � div s�

Z
oT
s : u� mT ¼ 0;Z

T
q trðtÞ ¼ 0;Z

T
r : rv�

Z
oT
r : v� mT ¼

Z
T
f � v:

ð2:2Þ
Then, given k 2 N and r = k or r = k � 1, we want to approximate the exact solution (t, r, u, p) by

discrete functions (th, rh, uh, ph) in the finite element space Rh · Rh · Vh · Wh, where
Rh :¼ th 2 ½L2ðXÞ�2�2 : th

n ���
T
2 ½PrðT Þ�2�2 8T 2 Th

o
;

Vh :¼ vh 2 ½L2ðXÞ�2 : vh

n ���
T
2 ½PkðT Þ�2 8T 2 Th

o
;

W h :¼ qh 2 L2ðXÞ : qh
� ��

T
2 Pk�1ðT Þ 8T 2 Th

o
:

ð2:3Þ
Hereafter, given an integer mP 0 we denote by PmðT Þ the space of polynomials of total degree at most

m on T. Also, the spaces Rh and Wh are endowed with the usual product norms of [L2(X)]2 · 2 and L2(X),
which are denoted by k � k½L2ðXÞ�2�2 and k � kL2ðXÞ, respectively. The norm for Vh will be defined later on in
Section 3.

We recall that the idea of the LDG method is to enforce the conservation laws given in (2.2) with the

traces of r and u on the boundary of each T 2 Th being replaced by suitable numerical approximations

of them. In other words, we consider the following formulation: Find (th, rh, uh, ph) 2 Rh · Rh · Vh · Wh

such that on each T 2 Th there hold
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Z
T
wðthÞ : sh �

Z
T
rh : sh �

Z
T
ph trðshÞ ¼ 0;Z

T
th : sh þ

Z
T
uh � div sh �

Z
oT
sh : bu � mT ¼ 0;Z

T
qh trðthÞ ¼ 0;Z

T
rh : rvh �

Z
oT

br : vh � mT ¼
Z
T
f � vh

ð2:4Þ
for all (sh, sh, vh, qh) 2 Rh · Rh · Vh · Wh, where the numerical fluxes bu and br, which usually depend on uh,

rh, and the boundary conditions, are chosen so that some compatibility conditions are satisfied.
Then, we define the average and the jump of q :¼ ðqT ÞT2Th

2
Q

T2Th
L2ðT Þ across e � EI by
fqg :¼ 1
2
qT ;e þ qT 0;e

� �
and sqt :¼ qT ;emT þ qT 0 ;emT 0 ; ð2:5Þ
where qT,e and qT 0;e denote, respectively, the restrictions of qT and qT 0 to e. Analogously, the corresponding

average and jump of f :¼ ðfT ÞT2Th
2
Q

T2Th
½L2ðT Þ�2�2

are defined by
ffg :¼ 1
2
fT ;e þ fT 0;e

� �
and sft :¼ fT ;emT þ fT 0 ;emT 0 : ð2:6Þ
Finally, for any v :¼ ðvT ÞT2Th
2
Q

T2Th
½L2ðT Þ�2, we let its average and jump across e � EI by
fvg :¼ 1
2
vT ;e þ vT 0;e

� �
and svt :¼ vT ;e � mT þ vT 0 ;e � mT 0 ; ð2:7Þ
and introduce its tensorial jump by
svt :¼ vT ;e � mT þ vT 0;e � mT 0 : ð2:8Þ
We notice that for any e � ED, the traces on e of every scalar, vector and tensor functions

q 2
Q

T2Th
L2ðT Þ; v 2

Q
T2Th

½L2ðT Þ�2, and f 2
Q

T2Th
½L2ðT Þ�2�2

, respectively, are uniquely defined, and hence

we set
fqg :¼ q; fvg :¼ v and ffg :¼ f;
as well as
sqt :¼ qmT ; svt :¼ v � mT ; svt :¼ v� mT and sst :¼ s mT :
We are now ready to complete the mixed LDG formulation (2.4). Indeed, using the approach from

[10,12,25] (see also [7]), we define the numerical fluxes bu and br for each T 2 Th, as follows:
buT ;e :¼
fuhg þ suhtb if e � EI ;

g if e � ED

�
ð2:9Þ
and
brT ;e :¼
frhg � srht� b� asuht if e � EI ;

rh � aðuh � gÞ � m if e � ED;

�
ð2:10Þ
where the auxiliary functions a (scalar) and b (vector), to be chosen appropriately, are single-valued on each

edge e � E. As in [7], these numerical fluxes are consistent and conservative.

Now, summing up in (2.4) over all the elements T 2 Th, integrating by parts appropriately, using the

definitions of the numerical fluxes, and applying some algebraic identities, we arrive to the formulation:

Find (th, uh, rh, ph) 2 Rh · Vh · Rh · Wh such that
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Z
X
wðthÞ : sh �

Z
X
rh : sh �

Z
X
ph trðshÞ ¼ 0; ð2:11Þ

Z
X
th : sh �

Z
X
rhuh : sh þ

Z
EI

fshg � ssht� bð Þ : suhtþ
Z
ED

uh � shm ¼
Z
ED

g � shm; ð2:12Þ

Z
X
rh : rhvh �

Z
EI

svht : frhg � srht� bð Þ �
Z
ED

vh � rhm þ
Z
EI

asuht : svht

þ
Z
ED

aðuh � mÞ : ðvh � mÞ ¼
Z
X
f � vh þ

Z
ED

aðg� mÞ : ðvh � mÞ ð2:13Þ
and
 Z
X
qh trðthÞ ¼ 0 ð2:14Þ
for all (sh, vh, sh, qh) 2 Rh · Vh · Rh · Wh, where $h denotes the piecewise gradient operator.

We notice, however, that the discrete scheme (2.11)–(2.14) is not uniquely solvable since adding

(0, 0 � cI, c) to (th, uh, rh, ph), for any c 2 R, yields further solutions of this problem. Therefore, in order

to guarantee uniqueness, we proceed as in [13] and require additionally that �Xtr(rh) = 0, which leads the
introduction of the Lagrange multiplier nh 2 R as a further unknown. In this way, our formulation becomes

the dual–dual system: Find ððth; uhÞ; ðrh; phÞ; nhÞ 2 ðRh � VhÞ � ðRh � W hÞ � R such that
Aððth; uhÞ; ðsh; vhÞÞ þ Bððsh; vhÞ; ðrh; phÞÞ ¼ F ðsh; vhÞ;
Bððth; uhÞ; ðsh; qhÞÞ þ Cððsh; qhÞ; nhÞ ¼ Gðsh; qhÞ;
Cððrh; phÞ; khÞ ¼ 0

ð2:15Þ
for all ððsh; vhÞ; ðsh; qhÞ; khÞ 2 ðRh � VhÞ � ðRh � W hÞ � R, where the semilinear form A : ðRh � VhÞ�
ðRh � VhÞ ! R, the bilinear forms B : ðRh � VhÞ � ðRh � W hÞ ! R and C : ðRh � W hÞ � R ! R, and the

functionals F : ðRh � VhÞ ! R and G : ðRh � W hÞ ! R, are defined by
Aððth; uhÞ; ðsh; vhÞÞ :¼
Z
X
wðthÞ : sh þ

Z
EI

asuht : svhtþ
Z
ED

aðuh � mÞ : ðvh � mÞ;

Bððsh; vhÞ; ðsh; qhÞÞ :¼ �
Z
X
sh : sh þ

Z
X
rhvh : sh �

Z
X
qh trðshÞ

�
Z
EI

svht : fshg � ssht� bð Þ �
Z
ED

vh � shm;

Cððsh; qhÞ; khÞ :¼ kh

Z
X
trðshÞ;

F ðsh; vhÞ :¼
Z
X
f � vh þ

Z
ED

aðg� mÞ : ðvh � mÞ
and
Gðsh; qhÞ :¼ �
Z
ED

g � shm
for all (th, uh, rh, ph), (sh, vh, sh, qh) 2 Rh · Vh · Rh · Wh.

We point out that one knows in advance that nh = 0. In fact, this follows from the second equation of
(2.15) taking sh = I and qh = �1, and using the compatibility condition satisfied by the Dirichlet datum g.

Similarly, taking s = I and q = �1 in the continuous formulation (1.4), one also deduces that n = 0 [13,14].
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However, we do keep these artificial unknowns in both formulations since they are needed to insure the

symmetry of them.

The unique solvability of (2.15) will be established next by applying a slight generalization of the

classical Babuška–Brezzi theory to an equivalent mixed formulation (see (2.26) below) that arises after

expressing the unknowns rh and th in terms of uh and the Lagrange multiplier nh. In addition, the der-
ivation of the a-priori error estimates for the unknowns of (2.15) will also be based on the analysis of

(2.26). We emphasize, however, that the introduction of this equivalent formulation is just for theoret-

ical purposes and by no means for the explicit computation of the solution of (2.15), which is solved

directly.

We first introduce the semi-norm and norm associated to Vh. In fact, as in [8] we let h 2 L1ðEÞ be the

function related to the local meshsizes, that is
hðxÞ :¼
minfhT ; hT 0 g if x 2 intðoT \ oT 0Þ;
hT if x 2 intðoT \ CÞ:

�
ð2:16Þ
Also, we define a 2 L1ðEÞ as
a :¼ ba
h
; ð2:17Þ
and consider b 2 ½L1ðEIÞ�2 such that
kbk½L1ðEI Þ�2 6
bb; ð2:18Þ
where ba > 0 and bb are independent of the meshsize. Then, we set V(h) := Vh + [H1(X)]2 and define the semi-

norm j � j : VðhÞ ! R and the energy norm kj � jkh : VðhÞ ! R, respectively, by
jvj2h :¼ ka1=2svtk2½L2ðEI Þ�2�2 þ ka1=2ðv� mÞk2½L2ðEDÞ�2�2 8v 2 VðhÞ ð2:19Þ
and
kjvjk2h :¼ krhvk2½L2ðXÞ�2�2 þ jvj2h 8v 2 VðhÞ: ð2:20Þ
In addition, we let S : VðhÞ � Rh ! R be the bilinear form
Sðv; shÞ :¼
Z
EI

fshg � ssht� bð Þ : svtþ
Z
ED

v � shm 8ðv; shÞ 2 VðhÞ � Rh;
and let G : Rh ! R be the linear functional defined by GðshÞ :¼
R
ED
g � shm 8sh 2 Rh.

It is easy to show, similarly as for Lemmas 3.3 and 3.4 in [7], that S and G are bounded. In particular,

there exists CS > 0, independent of the meshsize, such that
jSðv; shÞj 6 CSjvjhkshk½L2ðXÞ�2�2 8ðv; shÞ 2 VðhÞ � Rh: ð2:21Þ
Thus, we let S : V(h) ! Rh be the linear and bounded operator induced by the bilinear form S, that is,

given v 2 V(h), S(v) is the unique element in Rh such that
Z
X
SðvÞ : sh ¼ Sðv; shÞ 8sh 2 Rh; ð2:22Þ
which, according to (2.21), satisfies
kSðvÞk½L2ðXÞ�2�2 6 CSjvjh 8v 2 VðhÞ: ð2:23Þ
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Similarly, in virtue of the Riesz Theorem, we let G be the unique element in Rh such thatR
XG : sh ¼ GðshÞ 8sh 2 Rh. As in [7], we point out that if the exact solution u of (1.1) is sufficiently smooth,

say u 2 [H1+ d(X)]2, with d > 1/2, then SðuÞ ¼ G. Actually, this regularity of u is assumed throughout the

rest of the paper.

Now, since rP k � 1 andrhuhjT 2 ½Pk�1ðT Þ�2�2
for each T 2 Th, we obtain from the second equation of

(2.15) that
th ¼ PRh rhuh � SðuhÞ þ Gþ nhIð Þ ¼ rhuh � SðuhÞ þ G; ð2:24Þ

whereas (2.11) yields
rh ¼ PRh wðthÞ � phIð Þ ¼ PRh wðrhuh � SðuhÞ þ GÞ � phIð Þ; ð2:25Þ

where PRh stands for the [L2(X)]2· 2-projection onto Rh. In this way, employing (2.24) and (2.25), we find

that problem (2.15) can be reformulated as: Find ððuh; nhÞ; phÞ 2 ðVh � RÞ � W h such that
½Ahðuh; nhÞ; ðvh; khÞ� þ ½Bhðvh; khÞ; ph� ¼ ½F h; ðvh; khÞ� 8ðvh; khÞ 2 Vh � R;

½Bhðuh; nhÞ; qh� ¼ ½Gh; qh� 8qh 2 W h;
ð2:26Þ
where the operators Ah : ðVðhÞ � RÞ ! ðVðhÞ � RÞ0 and Bh : ðVðhÞ � RÞ ! W 0, with W = L2(X), and the

functionals F h : VðhÞ � R ! R and Gh : W ! R, are defined by
½Ahðw; gÞ; ðv; kÞ� : ¼
Z
X
wðrhw� SðwÞ þ Gþ gIÞ : ðrhv� SðvÞ þ kIÞ�

þ
Z
EI

aswt : svtþ
Z
ED

aðw� mÞ : ðv� mÞ; ð2:27Þ

½Bhðv; kÞ; q� :¼ �
Z
X
q divh vþ

Z
X
ðqIÞ : ðSðvÞ � kIÞ; ð2:28Þ

½F h; ðv; kÞ� :¼
Z
X
f � vþ

Z
ED

aðg� mÞ : ðv� mÞ;

½Gh; q� :¼
Z
ED

q g � m
for all ðw; gÞ; ðv; kÞ 2 VðhÞ � R and for all q 2 W. Hereafter, divh denotes the piecewise divergence operator

and [Æ,Æ] stands for the corresponding duality pairings.

We remark that Bh, Fh, and Gh, are all bounded with respect to the corresponding norms. In particular,

the boundedness of Bh makes use of (2.23), and the boundedness of the functionals Fh and Gh is established

in the following lemma.

Lemma 2.1. There exist CF, CG > 0, depending on ba; l and k, but independent of the meshsize, such that
j½F h; ðvh; khÞ�j 6 CFBðf; gÞkðvh; khÞkVðhÞ�R 8ðvh; khÞ 2 Vh � R ð2:29Þ
and
j½Gh; qh�j 6 CGka1=2g � mkL2ðEDÞkqhkL2ðXÞ 8qh 2 W h; ð2:30Þ

where
Bðf; gÞ :¼ kfk2½L2ðXÞ�2 þ ka1=2g� mk2½L2ðEDÞ�2�2

n o1=2

:

Proof. It is similar to the proof of Lemma 4.4 in [7]. h
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3. Solvability of the mixed LDG formulation

In this section, we establish the unique solvability of (2.26) and the associated Céa-type error estimate.

Besides the already established boundedness of Bh, Fh, and Gh, our analysis requires also to show that Ah is

Lipschitz-continuous and strongly monotone, and that Bh satisfies the discrete inf-sup condition. To this
end, we first let X := [L2(X)]2· 2 and introduce the pure nonlinear operator N : X ! X 0 forming part of

(1.4), that is
½NðrÞ; ðsÞ� :¼
Z
X
wðrÞ : s 8r; s 2 X : ð3:1Þ
We observe that N is Gâteaux differentiable at each ~r 2 X . In fact, this derivative can be seen as the
bounded bilinear form DNð~rÞ : X � X ! R given by
DNð~rÞðr; sÞ :¼
Z
X
Dwð~rÞðr; sÞ ¼

Z
X

X2

i;j;k;l¼1

o

o~rkl
wijð~rÞrklsij

( )
8r; s 2 X ; ð3:2Þ
where Dwð~rÞ : X � X ! R is the Gâteaux derivative of w. It follows, according to (1.2) and (1.3), that there

exist positive constants ~C1 and ~C2 such that
jDNð~rÞðr; sÞj 6 ~C1krkXkskX and DNð~rÞðs; sÞ P ~C2ksk2X 8~r; r; s 2 X ; ð3:3Þ
which implies the strong monotonicity and Lipschitz continuity of the operator N on X.

Next, we introduce the application u : VðhÞ � R ! X given by
uðv; kÞ :¼ rhv� SðvÞ � kI 8ðv; kÞ 2 VðhÞ � R; ð3:4Þ
so that the corresponding non-linear part Nh : ðVðhÞ � RÞ ! ðVðhÞ � RÞ0 of Ah is defined by
½Nhðw; gÞ; ðv; kÞ� :¼ ½Nðuðw; gÞ þ GÞ;uðv; kÞ� 8ðw; gÞ; ðv; kÞ 2 VðhÞ � R: ð3:5Þ
We remark that Nh also admits a Gâteaux derivative at each ðz; fÞ 2 VðhÞ � R, which can be seen as the
bounded bilinear form DNhðz; fÞ : ðVðhÞ � RÞ � ðVðhÞ � RÞ ! R given by
DNhðz; fÞððw; gÞ; ðv; kÞÞ :¼ DNðuðz; fÞ þ GÞðuðw; gÞ;uðv; kÞÞ ð3:6Þ
for all ðw; gÞ; ðv; kÞ 2 VðhÞ � R. Hence, the Gâteaux derivative of Ah at ðz; fÞ 2 VðhÞ � R reduces to the

bounded bilinear form DAhðz; fÞ : ðVðhÞ � RÞ � ðVðhÞ � RÞ ! R defined by
DAhðz; fÞððw; gÞ; ðv; kÞÞ :¼ DNðuðz; fÞ þ GÞðuðw; gÞ;uðv; kÞÞ þ
Z
EI

aswt : svtþ
Z
ED

aðw� mÞ : ðv� mÞ

ð3:7Þ

for all ðw; gÞ; ðv; kÞ 2 VðhÞ � R.

On the other hand, taking into account that
Z
X
I : ðrhw� SðwÞÞ ¼ 0 8w 2 VðhÞ; ð3:8Þ
we find that
kuðv; kÞk2X ¼ krhv� SðvÞk2½L2ðXÞ�2�2 þ 2jXjjkj2 8ðv; kÞ 2 VðhÞ � R: ð3:9Þ
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In this way, (3.3), (3.6), (3.7) and (3.9) allow us to show that the nonlinear operator Ah is indeed Lipschitz

continuous and strongly monotone with respect to the norm
kðw; fÞk2VðhÞ�R ¼ kjwjk2h þ jfj2 8ðw; fÞ 2 VðhÞ � R:
More precisely, we have the following lemma whose proof is very similar to those of Lemmas 4.1 and 4.2

in [7].

Lemma 3.1. There exist CLC > 0 and CSM > 0, independent of the meshsize, such that
kAhðw; fÞ � Ahðv; kÞkðVðhÞ�RÞ0 6 CLCkðw� v; f� kÞkVðhÞ�R
and
½Ahðw; fÞ � Ahðv; kÞ; ðw� v; f� kÞ� P CSMkðw� v; f� kÞk2VðhÞ�R
for all ðw; fÞ; ðv; kÞ 2 VðhÞ � R.

Our next goal is to show the discrete inf-sup condition of the bilinear form Bh. For this purpose we now

let L2
0ðXÞ be the subspace of functions in L2(X) with zero mean value, and note that L2ðXÞ ¼ L2

0ðXÞ � R, i.e.,

each q 2 L2(X) can be uniquely decomposed as q ¼ ~qþ �q, with ~q :¼ q� 1
jXj
R
Xq

� �
2 L2

0ðXÞ and
�q :¼ 1

jXj
R
Xq 2 R. In addition, it follows easily that
kqk2L2ðXÞ ¼ k~qk2L2ðXÞ þ jXj�q2: ð3:10Þ
We now proceed as in Section 6.5 of [25] and establish the following result.

Lemma 3.2. There exists a constant CI > 0, independent of the meshsize, such that,
sup
vh2Vhnf0g

½Bhðvh; 0Þ; rh�
kjvhjkh

P CIkrhkL2ðXÞ 8rh 2 W h \ L2
0ðXÞ:
Proof. Let P : [H1(X)]2 ! Vh be the Raviart–Thomas equilibrium interpolation operator of degree k � 1

[4,24]. It is well known that Pw 2 H(div;X) "w 2 [H1(X)]2, which implies that its normal components

are continuous across the inter-element boundaries, and hence, when w 2 ½H 1
0ðXÞ�

2
we easily find that

sPwt = 0 on E. Thus, simple algebraic computations yields
½BhðPw; 0Þ; rh� ¼ �
Z
X
rh div w; 8rh 2 W h \ L2

0ðXÞ;
and similarly as in Lemma 6.11 from [25] we obtain
kjPwjkh 6 Ckrwk½L2ðXÞ�2 ;
where C > 0 is independent of the meshsize. The rest of the proof reduces to apply a continuous inf-sup

condition satisfied by Bh together with the Fortin property. h

The discrete inf-sup condition satisfied by the operator Bh is proved next.

Lemma 3.3. There exists a constant CINF > 0, independent of the meshsize, such that,
sup
ð0;0Þ6¼ðvh;khÞ2Vh�R

½Bhðvh; khÞ; qh�
kðvh; khÞkVðhÞ�R

P CINFkqhkL2ðXÞ 8qh 2 W h:
Proof. Let qh 2 Wh ˝ L2(X). Since L2ðXÞ ¼ L2
0ðXÞ � R, there exists ~qh 2 W h \ L2

0ðXÞ and �qh 2 R such that

qh ¼ ~qh þ �qh. Then, applying the linearity of Bh together with (3.8), we have
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½Bhðvh; khÞ; qh� ¼ ½Bhðvh; khÞ; ~qh� � 2�qhkhjXj 8ðvh; khÞ 2 Vh � R; ð3:11Þ
and hence
sup
ð0;0Þ6¼ðvh;khÞ2Vh�R

½Bhðvh; khÞ; qh�
kðvh; khÞkVðhÞ�R

P sup
0 6¼vh2Vh

½Bhðvh; 0Þ; qh�
kjvhjkh

¼ sup
06¼vh2Vh

½Bhðvh; 0Þ; ~qh�
kjvhjkh

;

which, thanks to Lemma 3.2, implies the existence of a constant CI > 0, independent of the meshsize, such

that
sup
ð0;0Þ6¼ðvh;khÞ2Vh�R

½Bhðvh; khÞ; qh�
kðvh; khÞkVðhÞ�R

P CIk~qhkL2ðXÞ: ð3:12Þ
On the other hand, we also have that
sup
ð0;0Þ6¼ðvh;khÞ2Vh�R

½Bhðvh; khÞ; qh�
kðvh; khÞkVðhÞ�R

P sup
0 6¼kh2R

½Bhð0; khÞ; qh�
jkhj

P
½Bhð0;��qhÞ; qh�

j�qhj
¼ 2jXjj�qhj;
which, together with (3.12) and (3.10), completes the proof. h

We now let iÆiLDG be the norm on VðhÞ � R� L2ðXÞ given by
kðv; k; qÞk2LDG :¼ kjvjk2h þ jkj2 þ kqk2L2ðXÞ 8ðv; k; qÞ 2 VðhÞ � R� L2ðXÞ:
Theorem 3.1. The LDG scheme (2.26) has a unique solution ðuh; nh; phÞ 2 Vh � R� W h, and there exists a

constant C > 0, independent of the meshsize, such that
kðuh; nh; phÞkLDG 6 C Bðf; gÞ þ ka1=2g � mkL2ðEDÞ

� �
: ð3:13Þ
Moreover, denoting by CB the boundedness constant associated to Bh, there hold the Strang-type error

estimates
kju� uhjkh 6 1þ CLC

CSM

� 	
1þ CB

CINF

� 	
inf
vh2Vh

kju� vhjkh þ
CB

CSM

inf
qh2W h

kp � qhkL2ðXÞ

þ C�1
SM sup

ð0;0Þ6¼ðw;gÞ2Vh�R

j½Ahðu; nÞ; ðw; gÞ� þ ½Bhðw; gÞ; p� � ½F h; ðw; gÞ�j
kðw; gÞkVðhÞ�R

ð3:14Þ
and
kp � phkL2ðXÞ 6 1þ CB

CINF

� 	
inf

qh2W h

kp � qhkL2ðXÞ þ
CLC

CINF

kju� uhjkh

þ C�1
INF sup

ð0;0Þ6¼ðw;gÞ2Vh�R

j½Ahðu; nÞ; ðw; gÞ� þ ½Bhðw; gÞ; p� � ½F h; ðw; gÞ�j
kðw; gÞkVðhÞ�R

: ð3:15Þ
Proof. The unique solvability of (2.26) and the upper bound (3.13) follow from Lemmas 3.1, 3.3 and 2.1,

and a nonlinear version of the classical Babuška–Brezzi theory (see, e.g., Lemma 2.1 in [15]), whereas the

derivation of the Strang-type error estimates is a simple extension to the present nonlinear case of Propo-

sitions 4.1 and 4.3 in [25]. The latter means that (3.14) and (3.15) basically follow from the strong mono-

tonicity and Lipschitz-continuity of Ah, the boundedness of Bh, and the discrete inf-sup condition satisfied

by Bh. We omit further details and refer the interested reader to chapter 5 in [5]. h



438 R. Bustinza, G.N. Gatica / Journal of Computational Physics 207 (2005) 427–456
4. A-priori error analysis

In order to derive the a-priori error estimates for the mixed LDG scheme (2.15), we need some prelimin-

ary results. We begin with the following lemma establishing local approximation properties of piecewise

polynomials. For the original result dealing with integer indexes we refer to [9], whereas a simple proof
for the extension to non-integer Sobolev seminorms can be seen in [16].

Lemma 4.1. Let Th be a regular triangulation and let T 2 Th. Given a non-negative integer m, let

Pm
T : L2ðT Þ ! PmðT Þ be the linear and bounded operator given by the L2(T)-orthogonal projection, which

satisfies Pm
T ðpÞ ¼ p for all p 2 PmðT Þ. Then there exists Cort > 0, independent of the meshsize, such that for

each s, t satisfying 0 6 s 6 m + 1 and 0 6 s < t, there holds
jðI�Pm
T ÞðwÞjHsðT Þ 6 Corth

minft;mþ1g�s
T kwkHtðT Þ 8w 2 HtðT Þ; ð4:1Þ
and for each t > 1/2 there holds
kðI�Pm
T ÞðwÞkL2ðoT Þ 6 Corth

minft;mþ1g�1=2
T kwkHtðT Þ 8w 2 HtðT Þ: ð4:2Þ
The analogue of Lemma 3.1 in [7], which provides useful estimates concerning averages and jumps on

the edges of the triangulation, is also required.

Lemma 4.2. There exist constants �C1; �C2; > 0, independent of the meshsize, such that for all

f :¼ ðfT ÞT2Th
2
Q

T2Th
½L2ðT Þ�2�2, there hold

(i) kh1=2ffgk2½L2ðEI Þ�2�2 6 �C1

P
T2Th

hTkfTk
2

½L2ðoT Þ�2�2 ,

(ii) kh1=2sftk2½L2ðEI Þ�2 6
�C2

P
T2Th

hTkfTk
2

½L2ðoT Þ�2�2 .

At this point, we observe that the assumed regularity on the exact solution u guarantees that the

jump sut vanishes on any interior edge of Th. In addition, since r = w($u) � pI 2 [L2(X)]2 · 2 and

�div(w($u) � pI) = f in X, with f 2 [L2(X)]2, we conclude that r 2 H(div;X), whence srt = 0 on each

e 2 EI . Also, we recall that n = 0, and r satisfies �Xtr(r) = 0, which due to the kind of nonlinearity

we are dealing with, is equivalent to the fact that p 2 L2
0ðXÞ. On the other hand, besides PRh , the

[L2(X)]2· 2-projection onto Rh, in what follows we need the operators PVh and PW h , which denote

the [L2(X)]2 and L2(X) projections onto Vh and Wh, respectively. According to the definitions of Rh,

Vh, and Wh (see (2.3)) we find that, given s := (sij) 2 [L2(X)]2· 2, v := (vi) 2 [L2(X)]2, and q 2 L2(X), there
hold
PRhðsÞjT ¼ ðPr
T ðsijjT ÞÞ; PVhðvÞjT ¼ ðPk

T ðvijT ÞÞ and PW hðqÞjT ¼ Pk�1
T ðqjT Þ ð4:3Þ
for all T 2 Th, where r = k or r = k � 1.
4.1. Energy norm error estimates

We first provide an upper bound for the consistency term appearing in the Strang type error estimates

(3.14) and (3.15) (cf. Theorem 3.1).

Lemma 4.3. Assume that rjT := (w($u) � pI)jT 2 [Ht(T)]2· 2 for all T 2 Th, with t > 1/2. Then, there exists

Ccon > 0, independent of the meshsize, but depending on ba; bb, and l, such that for each ðw; gÞ 2 VðhÞ � R,

(w,g) 6¼ (0,0),
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j½Ahðu; nÞ; ðw; gÞ� þ ½Bhðw; gÞ; p� � ½F h; ðw; gÞ�j
kjwjkh

6 Ccon

X
T2Th

h2minft;rþ1g
T krk2½HtðT Þ�2�2

( )1=2

:

Proof. Let ðw; gÞ 2 VðhÞ � R. Since n = 0, SðuÞ ¼ G, sut = 0 on EI , f = �div(w($u) � pI) in X, and u = g on

C, we find that
½Ahðu; nÞ; ðw; gÞ� þ ½Bhðw; gÞ; p� � ½F h; ðw; gÞ� ¼
Z
X
wðruÞ : ðrhw� SðwÞ þ gIÞ þ

Z
ED

aðu� mÞ : ðw� mÞ

�
Z
X
pI : ðrhw� SðwÞ þ gIÞ

�
Z
X
f � w�

Z
ED

aðg� mÞ : ðw� mÞ

¼
Z
X
wðruÞ : rhw� SðwÞð Þ þ

Z
X
w � divðwðruÞ � pIÞ

�
Z
X
pI : ðrhw� SðwÞÞ þ g

Z
X
trðrÞ

¼
Z
X
r : rhw� SðwÞð Þ þ

Z
X
w � div r: ð4:4Þ
Applying Gauss� formula on each element T 2 Th, we obtain
Z
X
w � div r ¼

X
T2Th

Z
T
w � div r ¼

X
T2Th

�
Z
T
r : rwþ

Z
oT
w � rm

� 	
¼ �

Z
X
r : rhwþ

Z
EI

frg : swtþ
Z
ED

w � rm;
which, replaced back into (4.4), yields
½Ahðu; nÞ; ðw; gÞ� þ ½Bhðw; gÞ; p� � ½F h; ðw; gÞ� ¼ �
Z
X
SðwÞ : rþ

Z
EI

frg : swtþ
Z
ED

w � rm:
Next, noting that
R
XSðwÞ : r ¼

R
XSðwÞ : PRhr, applying the definition of S (cf. (2.22)), recalling that

srt = 0 on EI , and using that w Æ sm = s:(w � m), we arrive to
½Ahðu;nÞ; ðw;gÞ�þ ½Bhðw;gÞ;p� � ½F h; ðw;gÞ� ¼
Z

EI

ðI�PRhÞðrÞ
� 


: swt�
Z

EI

sðI�PRhÞðrÞt�bð Þ : swt

þ
Z

ED

ðI�PRhÞðrÞ : ðw� mÞ:
Applying Cauchy–Schwarz�s inequality, Lemmas 4.2 and 4.1, we get, with a constant �C depending on ba
and l,
 Z

EI

ðI�PRhÞðrÞ
� 


: swt

���� ����2 6 �Ckh1=2 ðI�PRhÞðrÞ
� 


k2½L2ðEI Þ�2�2ka1=2swtk2½L2ðEI Þ�2�2

6 �C
X
T2Th

hTkðI�PRhÞðrÞk
2

½L2ðoT Þ�2�2kjwjk2h

6 �C
X
T2Th

h2minft;rþ1g
T krk2½HtðT Þ�2�2kjwjk2h:
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The other integrals in the consistency term are bounded similarly to the previous one. We omit further

details. h

The following lemma is also needed to derive the a-priori error estimate for u.

Lemma 4.4. There exists Cupp > 0, independent of the meshsize, such that
kjvkj2h 6 Cupp

X
T2Th

jvj2½H1ðT Þ�2 þ h�1
T kvk2½L2ðoT Þ�2

n o
8v 2 VðhÞ:
Proof. It is similar to the proof of Lemma 5.3 in [7]. h

Hence, as a consequence of the Strang-type error estimates (3.14) and (3.15) (cf. Theorem 3.1), and Lem-
mas 4.1, 4.3, and 4.4, we obtain the following result.

Theorem 4.1. Let (t, u, r, p, n) and (th, uh, rh, ph, nh) be the solutions of (1.4) and (2.15), respectively. Assume

that ujT 2 [Ht+1(T)]2, rjT 2 [Ht(T)]2· 2, and pjT 2 Ht(T), for all T 2 Th, with t > 1/2. Then there exists
Cerr > 0, independent of the meshsize, but depending on ba; bb, l, and the polynomial approximation degree k,

such that
kju� uhjk2h þ kp � phk
2

L2ðXÞ 6 Cerr

X
T2Th

h2minft;kg
T kuk2½Htþ1ðT Þ�2 þ krk2½HtðT Þ�2�2 þ kpk2HtðT Þ

n o
:

Proof. See Chapter 5 in [5] for details. h

The a-priori error estimate for the remaining unknowns t and r is established next.

Theorem 4.2. Assume the same hypotheses of Theorem 4.1. Then there exists ~Cerr > 0, independent of the
meshsize, but depending on ba; bb, l, CS, and the polynomial approximation degree k, such that
kt� thk2½L2ðXÞ�2�2 þ kr� rhk2½L2ðXÞ�2�2 6 ~Cerr

X
T2Th

h2minft;kg
T kuk2½Htþ1ðT Þ�2 þ krk2½HtðT Þ�2�2 þ kpk2HtðT Þ

n o
:

Proof. It suffices to recall that t ¼ ru; th ¼ rhuh � SðuhÞ þ SðuÞ; rh ¼ PRhðwðthÞ � phIÞ and that

r = w(t) � pI, and then apply the a-priori error estimates for u and p provided by Theorem 4.1. We omit

details and refer again to Chapter 5 in [5]. h

4.2. L2-norm error estimate

We now turn our attention to the L2-norm for the error (u � uh). To this end, we first recall from (3.6)

that the Gâteaux derivative of Nh at any ðz; fÞ 2 VðhÞ � R becomes
DNhðz; fÞððw; gÞ; ðv; kÞÞ :¼ DNðuðz; fÞ þ GÞðuðw; gÞ;uðv; kÞÞ ð4:5Þ

for all ðw; gÞ; ðv; kÞ 2 VðhÞ � R, with u given by (3.4).

In what follows we assume that
owij

o~rkl
ð~rÞ ¼ owkl

o~rij
ð~rÞ, for all ~r 2 X , and for all i, j, k, l = 1, 2, and that DNh is

hemi-continuous, that is for any r, s 2 X, the mapping
R 3 l ! DNhððw; gÞ þ lðv; kÞÞððv; kÞ; �Þ 2 ðVðhÞ � RÞ0
is continuous. Thus, applying the mean value theorem we deduce that there exists a convex combination of

(u,n) and (uh,nh), say ð~u; ~nÞ 2 VðhÞ � R, such that
DNhð~u; ~nÞððu� uh; n� nhÞ; ðv; kÞÞ ¼ ½Nhðu; nÞ �Nhðuh; nhÞ; ðv; kÞ� ð4:6Þ
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for all ðv; kÞ 2 VðhÞ � R. Further, it follows from (2.27), (3.7) and (4.6) that
DAhð~u; ~nÞððu� uh; n� nhÞ; ðv; kÞÞ ¼ ½Ahðu; nÞ � Ahðuh; nhÞ; ðv; kÞ� ð4:7Þ

for all ðv; kÞ 2 VðhÞ � R.

Next, we let ðz; qÞ 2 ½H 1ðXÞ�2 � L2
0ðXÞ be the unique weak solution of the linear boundary value problem
� div ~r ¼ u� uh in X; div z ¼ 0 in X; z ¼ 0 on C;

~r :¼ ð~rijÞ; ~rij :¼ Dwijðuð~u; ~nÞ þ GÞ : rz� qdij;
ð4:8Þ
where Dwijð~rÞ denotes the derivative (jacobian) of wij at ~r, and assume that there exist c > 1/2 and a constant

Creg > 0, independent of u and uh, such that z 2 ½H cþ1ðXÞ�2 \ ½H 1
0ðXÞ�

2
; q 2 H cðXÞ \ L2

0ðXÞ, and
~r 2 ½H cðXÞ�2�2

, with
~rk k½H cðXÞ�2�2 þ kzk½H cþ1ðXÞ�2 þ kqkH cðXÞ 6 Cregku� uhk½L2ðXÞ�2 : ð4:9Þ
Hence, using the method applied in Section 2, we deduce that the mixed LDG formulation of problem

(4.8) reduces to: Find ðzh; fh; qhÞ 2 Vh � R� W h such that
DAhð~u; ~nÞððzh; fhÞ; ðvh; khÞÞ þ ½Bhðvh; khÞ; qh� ¼ ½~F h; ðvh; khÞ�;
½Bhðzh; fhÞ; rh� ¼ ½~Gh; rh�;

ð4:10Þ
for all ðvh; kh; rhÞ 2 Vh � R� W h, where Bh is given by (2.28), and the linear functionals
~F h : VðhÞ � R ! R; ~Gh : W h ! R are defined by
½~F h; ðv; kÞ� :¼
Z
X
ðu� uhÞ � v 8ðv; kÞ 2 VðhÞ � R ð4:11Þ
and
½~Gh; rh� :¼ 0 8rh 2 W h: ð4:12Þ

The unknown fh corresponds to the discrete counterpart of the Lagrange multiplier f, which takes care

of the uniqueness condition
R
X tr ~r ¼ 0. We remark that they are both zero.

As a consequence of the assumption (1.3) on w, and proceeding as in the proof of Lemma 3.1, one can
show that DAhð~u; ~nÞ is uniformly ðVðhÞ � RÞ-elliptic with respect to k � kVðhÞ�R. In this way, since Bh satisfies

the discrete inf-sup condition (cf. Lemma 3.3), we conclude that problem (4.10) has a unique solution

ðzh; fh; qhÞ 2 Vh � R� W h. Furthermore, applying the linear version of the consistency estimate provided

by Lemma 4.3, and using (4.9), we find that
jDAhð~u; ~nÞððz; fÞ; ðw; gÞÞ þ ½Bhðw; gÞ; q� � ½~F h; ðw; gÞ�j 6 Cconh
minfc;rþ1g ~rk k½HcðXÞ�2�2kjwjkh

6 ~Cconh
minfc;kgku� uhk½L2ðXÞ�2kjwjkh 8ðw; gÞ 2 VðhÞ � R;

ð4:13Þ
with ~Ccon :¼ CconCreg, where the inequality hmin{c,r+1}
6 hmin{c,k} has also been used.

The following theorem establishes the a-priori estimate for the L2-norm of the error (u � uh).

Theorem 4.3. Assume the hypotheses of Theorem 4.1. Then there exists �Cerr > 0, independent of the meshsize,

such that
ku� uhkL2ðXÞ 6 �Cerrh
minft;kgþminfc;kg

X
T2Th

kuk2½Htþ1ðT Þ�2 þ krk2½HtðT Þ�2�2 þ kpk2HtðT Þ

� �( )1=2

:
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Proof. Taking ðv; kÞ :¼ ðu� uh; n� nhÞ 2 VðhÞ � R in (4.11), and adding and substracting convenient

expressions, we can write
ku� uhk2½L2ðXÞ�2 ¼ ½~F h; ðu� uh; n� nhÞ�

¼ DAhð~u; ~nÞððz; fÞ; ðu� uh; n� nhÞÞ þ ½Bhðu� uh; n� nhÞ; q�

� DAhð~u; ~nÞððz; fÞ; ðu� uh; n� nhÞÞ þ ½Bhðu� uh; n� nhÞ; q� � ½~F h; ðu� uh; n� nhÞ�
� �

;

which, according to (4.13), and using that n = nh = 0, yields
ku� uhk2½L2ðXÞ�2 6 jDAhð~u; ~nÞððz; fÞ; ðu� uh; n� nhÞÞ þ ½Bhðu� uh; n� nhÞ; q�j
þ ~Cconh

minfc;kgku� uhk½L2ðXÞ�2kju� uhjkh: ð4:14Þ
It is easy to check that [Bh(u � uh,n � nh),rh] = 0 for all rh 2Wh. Hence, applying the boundedness of Bh

(with constant Cbh), Lemma 4.1, and the estimate (4.9), we find that
j½Bhðu� uh; n� nhÞ; q�j ¼ j½Bhðu� uh; n� nhÞ; ðI�PW hÞðqÞ�j
6 Cbhkju� uhjkhkðI�PW hÞðqÞkL2ðXÞ
6 �Cconh

minfc;kgkju� uhjkhku� uhk½L2ðXÞ�2 ; ð4:15Þ
with �Ccon ¼ CbhCortCreg.

Next, employing the symmetry of DAhð~u; ~nÞ, adding and substracting ðPVhðzÞ; fhÞ, and denoting

ehðzÞ ¼ ðI�PVhÞðzÞ, we obtain
DAhð~u; ~nÞððz; fÞ; ðu� uh; n� nhÞÞ ¼ DAhð~u; ~nÞððu� uh; n� nhÞ; ðPVhðzÞ; fhÞÞ
þ DAhð~u; ~nÞððu� uh; n� nhÞ; ðehðzÞ; f� fhÞÞ;
which, thanks to (4.7), becomes
DAhð~u; ~nÞððz; fÞ; ðu� uh; n� nhÞÞ ¼ ½Ahðu; nÞ � Ahðuh; nhÞ; ðPVhðzÞ; fhÞ�
þ ½Ahðu; nÞ � Ahðuh; nhÞ; ðehðzÞ; f� fhÞ�: ð4:16Þ
Now, applying Lemma 4.4, (4.3) and the approximation properties provided in Lemma 4.1, and using

the regularity estimate (4.9), we get
kjehðzÞkj2h 6 2CuppC
2
orth

2minfc;kgkzk2½H cþ1ðXÞ�2 6 2CuppC
2
ortC

2
regh

2minfc;kgku� uhk2½L2ðXÞ�2 : ð4:17Þ
Thus, the Lipschitz-continuity of Ah and (4.17) imply that
½Ahðu; nÞ � Ahðuh; nhÞ; ðehðzÞ; f� fhÞ� 6 CLCkju� uhjkhkjehðzÞjkh
6 Ĉconh

minfc;kgkju� uhjkhku� uhk½L2ðXÞ�2 ; ð4:18Þ
with a positive constant Ĉcon depending on CLC, Cupp, Cort, and Creg.
On the other hand, since div z = 0, S(z) = 0, and f = 0, we find that
½Bhðz; fÞ; r� ¼ 0 8r 2 L2ðXÞ: ð4:19Þ

In addition, using that tr($z) = div z = 0, and applying Gauss� formula, noting that z2[Hc+1(X)]2, z = 0

on C, and div(w($u) � pI) = �f, we obtain
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½Ahðu; nÞ; ðz; fÞ� ¼
Z
X
wðruÞ : rz ¼

Z
X
ðwðruÞ � pIÞ : rz ¼

Z
X
f � z ¼ ½F h; ðz; fÞ�: ð4:20Þ
Also, according to the first equation of the mixed formulation (2.26), we have that
½Ahðuh; nhÞ; ðPVhðzÞ; fhÞ� þ ½BhðPVhðzÞ; fhÞ; ph� ¼ ½F h; ðPVhðzÞ; fhÞ�: ð4:21Þ

In this way, replacing ½Ahðuh; nhÞ; ðPVhðzÞ; fhÞ� by the expression derived from (4.21), and inserting

0 = [Fh,(z,f)] � [Ah(u,n),(z,f)] from (4.20), we can write
½Ahðu; nÞ � Ahðuh; nhÞ; ðPVhðzÞ; fhÞ� ¼ ½Ahðu; nÞ; ðPVhðzÞ; fhÞ� � ½F h; ðPVhðzÞ; fhÞ� þ ½BhðPVhðzÞ; fhÞ; ph�
þ ½F h; ðz; fÞ� � ½Ahðu; nÞ; ðz; fÞ�;
which, employing from (4.19) that [Bh(z,f),ph] = 0, yields
½Ahðu;nÞ�Ahðuh;nhÞ;ðPVhðzÞ;fhÞ�¼ ½BhðehðzÞ;f�fhÞ;p�ph�
� ½Ahðu;nÞ;ðehðzÞ;f�fhÞ�f þ½BhðehðzÞ;f�fhÞ;p��½F h;ðehðzÞ;f�fhÞ�g:
The boundedness of Bh, the consistency estimate given by Lemma 4.3, and the fact that hmin{t,r+1}
6

hmin{t,k}, imply that
½Ahðu;nÞ�Ahðuh;nhÞ;ðPVhðzÞ;fhÞ�6CbhkjehðzÞjkhkp� phkL2ðXÞ þCconh
minft;kg

X
T2Th

krk2½HtðT Þ�2�2

( )1=2

kjehðzÞjkh;
which, thanks to (4.17), becomes
½Ahðu; nÞ � Ahðuh; nhÞ; ðPVhðzÞ; fhÞ� 6 ~Chminfc;kgku� uhk½L2ðXÞ�2kp � phkL2ðXÞ

þ ~Chminft;kgþminfc;kg
X
T2Th

krk2½HtðT Þ�2�2

( )1=2

ku� uhk½L2ðXÞ�2 ; ð4:22Þ
with a positive constant ~C depending on Cbh, Ccon, Cupp, Cort, and Creg.

Finally, (4.14)–(4.16), (4.18), and (4.22) give
ku� uhk½L2ðXÞ�2 6 ~Ccon þ �Ccon þ Ĉcon þ ~C
� �

hminfc;kg kju� uhjkh þ kp � phkL2ðXÞ
n o

þ ~Chminft;kgþminfc;kg
X
T2Th

krk2½HtðT Þ�2�2

( )1=2

;

which, together with the estimates for kju� uhjkh and kp � phkL2ðXÞ provided in Theorem 4.1, completes the

proof. h
5. A-posteriori error analysis

Hereafter, we consider problem (1.1) with homogeneous Dirichlet condition, that is g = 0. Then we re-

define V(h) as VðhÞ :¼ Vh þ ½H 1
0ðXÞ�

2
and introduce the semilinear global operator Ah : ðVðhÞ � R�

L2ðXÞÞ ! ðVðhÞ � R� L2ðXÞÞ0 and the linear functional Fh 2 ðVðhÞ � R� L2ðXÞÞ0 arising after adding the

two equations in (2.26), that is
½Ahðw; g; rÞ; ðv; k; qÞ� :¼ ½Ahðw; gÞ; ðv; kÞ� þ ½Bhðv; kÞ; r� þ ½Bhðw; gÞ; q� ð5:1Þ

and
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½Fh; ðv; k; qÞ� :¼ ½F h; ðv; kÞ� þ ½Gh; q� ð5:2Þ

for all ðw; g; rÞ; ðv; k; qÞ 2 VðhÞ � R� L2ðXÞ.

It follows easily that the Gâteaux derivative of Ah at ðz; f; sÞ 2 VðhÞ � R� L2ðXÞ reduces to the bounded

bilinear form DAhðz; f; sÞ : ðVðhÞ � R� L2ðXÞÞ � ðVðhÞ � R� L2ðXÞÞ ! R defined by
DAhðz; f; sÞððw; g; rÞ; ðv; k; qÞÞ :¼ DAhðz; fÞððw; gÞ; ðv; kÞÞ þ ½Bhðv; kÞ; r� þ ½Bhðw; gÞ; q� ð5:3Þ
for all ðw; g; rÞ; ðv; k; qÞ 2 VðhÞ � R� L2ðXÞ, where (cf. (3.7) and (3.4))
DAhðz; fÞððw; gÞ; ðv; kÞÞ :¼ DNðuðz; fÞ þ GÞðuðw; gÞ;uðv; kÞÞ þ
Z
EI

aswt : svtþ
Z
ED

aðw� mÞ : ðv� mÞ

ð5:4Þ

and u(v,k) := $hv � S(v) � kI for all ðv; kÞ 2 VðhÞ � R.

The derivation of our a-posteriori error estimate in Theorem 5.1 below will make use of an inf-sup con-

dition for DAhð~u; ~n; pÞ and a consistency error estimate (in terms of Ah and Fh) for problem (2.26). More
precisely, the following two lemmas are needed.

Lemma 5.1. Let ð~u; ~nÞ 2 VðhÞ � R be such that (4.6) and (4.7) hold. Then there exist C; ~C > 0, independent of

the meshsize and ð~u; ~nÞ, such that for any ðw; g; rÞ 2 ½H 1
0ðXÞ�

2 � R� L20ðXÞ there exists

ðv; k; qÞ 2 ½H 1
0ðXÞ�

2 � R� L20ðXÞ satisfying
DAhð~u; ~n; pÞððw; g; rÞ; ðv; k; qÞÞ P Ckðw; g; rÞk2LDG ð5:5Þ

and
kðv; k; qÞkLDG 6 ~Ckðw; g; rÞkLDG: ð5:6Þ
Proof. We adapt the proof of Lemma 4.3 in [19] to the present situation. In fact, given ðw; g; rÞ 2
½H 1

0ðXÞ�
2 � R� L2

0ðXÞ we first observe, according to Corollary 2.4 in [17], that there exists z 2 ½H 1
0ðXÞ�

2
such

that
�
Z
X
rdiv z P C0krk2L2ðXÞ and kjzjkh 6 krkL2ðXÞ: ð5:7Þ
Then, we choose v := j0w + j1z, q := �j0r, and k := j0g, where j0 and j1 are positive constants to be

determined so that (5.5) and (5.6) hold. Since w; v 2 ½H 1
0ðXÞ�

2
, we have that S(w) = S(v) = 0, swt = svt = 0

on EI , and v = 0 on ED. It follows from (5.3), (5.4), and the definition of Bh (cf. (2.28)), that
DAhð~u; ~n; pÞððw; g; rÞ; ðv; k; qÞÞ ¼ j1DNðuð~u; ~nÞ þ GÞðrw� gI;rzÞ

þ j0DNðuð~u; ~nÞ þ GÞðrw� gI;rw� gIÞ � j1

Z
X
rdiv z;
which, applying (3.3), (5.7), and the inequality �ab P � a2

2�
� �b2

2
, yields
DAhð~u; ~n; pÞððw; g; rÞ; ðv; k; qÞÞ P c1ð�Þkrw� gIk2½L2ðXÞ�2�2 þ c2ð�Þkrk2L2ðXÞ 8� > 0;
where c1ð�Þ :¼ j0
~C2 � j1 ~C1

2�
and c2ð�Þ :¼ j1C0 � j1�~C1

2
.

Hence, observing from (3.9) that krw� gIk2½L2ðXÞ�2�2 ¼ krwk2½L2ðXÞ�2�2 þ 2jXjjgj2, and taking � ¼ C0
~C1
;

j0 ¼ 1, and j1 ¼
~C2C0

~C
2

1

, the above inequality becomes
DAhð~u; ~n; pÞððw; g; rÞ; ðv; k; qÞÞ P
~C2

2
krwk2½L2ðXÞ�2�2 þ ~C2jXjjgj2 þ

~C2C
2
0

2~C
2

1

krk2L2ðXÞ; ð5:8Þ
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which proves (5.5). Finally, the estimate (5.6) is a direct consequence of the choice of (v, k, q) and the upper

bound for ijzijh in (5.7). h

Lemma 5.2. Let ðv; qÞ 2 ½H 1
0ðXÞ�

2 � L20ðXÞ and define the orthogonal projections vh :¼ PVhðvÞ 2 Vh and

qh :¼ PW hðqÞ 2 W h \ L20ðXÞ. Then, there exists a constant Ccon > 0, independent of h, such that
½Fh; ðv� vh; 0; q� qhÞ� � ½Ahðuh; nh; phÞ; ðv� vh; 0; q� qhÞ�j j 6 Ccongkðv; 0; qÞkLDG; ð5:9Þ
where g2 :¼
P

T2Th
g2T , and for each T 2 Th
g2T :¼ h2Tkf þ div wðthÞ � rphk
2

½L2ðT Þ�2 þ ktrðthÞk2½L2ðT Þ�2 þ hTkswðthÞ � phItk
2

½L2ðoT=CÞ�2

þ hTkrh � ðwðthÞ � phIÞk
2

½L2ðoT\EDÞ�2�2 þ ka1=2uh � mk2½L2ðoT\EDÞ�2�2

þ hTkfrhg � srht� b� fwðthÞ � phIgk
2

½L2ðoT\EI Þ�2�2 þ ka1=2suhtk2½L2ðoT\EI Þ�2�2 : ð5:10Þ
Proof. We first note, according to the definitions of Ah and Bh (cf. (2.27), (2.28)), that
½Ahðuh; nhÞ; ðv� vh; 0Þ� þ ½Bhðv� vh; 0Þ; ph� ¼
Z
X

wðthÞ � phIð Þ : rhðv� vhÞ � Sðv� vhÞð Þ

þ
Z
EI

asuht : sv� vhtþ
Z
ED

aðuh � mÞ : ððv� vhÞ � mÞ;
which, applying integration by parts and using that rh ¼ PRhðwðthÞ � phIÞ (cf. (2.25)), yields
½Ahðuh; nhÞ; ðv� vh; 0Þ� þ ½Bhðv� vh; 0Þ; ph� ¼
X
T2Th

�
Z
T
divðwðthÞ � phIÞ � ðv� vhÞ

�
þ
Z
oT
ðwðthÞ � phIÞ : ððv� vhÞ � mÞ

	
þ
Z
EI

asuht : sv� vht

þ
Z
ED

aðuh � mÞ : ððv� vhÞ � mÞ �
Z
X
rh : Sðv� vhÞ:

ð5:11Þ
Next, simple computations show that
X
T2Th

Z
oT
ðwðthÞ � phIÞ : ððv� vhÞ � mÞ ¼

Z
EI

fwðthÞ � phIg : sv� vhtþ
Z
EI

swðthÞ � phIt � fv� vhg

þ
Z
ED

ðwðthÞ � phIÞ : ððv� vhÞ � mÞ: ð5:12Þ
In addition, the definition of S (cf. (2.22)) and the fact that (v � vh) Æ rhm = rh:(v � vh) � m, imply that
Z
X
rh : Sðv� vhÞ ¼

Z
E

frhg � srht� bð Þ : sv� vhtþ
Z
E

rh : ððv� vhÞ � mÞ: ð5:13Þ

I D
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Hence, replacing (5.12) and (5.13) back into (5.11), we find that
½Ahðuh;nhÞ; ðv� vh;0Þ� þ ½Bhðv� vh;0Þ;ph� ¼ �
Z
X
divhðwðthÞ � phIÞ � ðv� vhÞ þ

Z
EI

asuht : sv� vht

þ
Z
ED

aðuh � mÞ : ððv� vhÞ � mÞ

�
Z
EI

frhg� srht� b�fwðthÞ � phIgð Þ : sv� vht

�
Z
ED

ðrh �wðthÞ þ phIÞ : ððv� vhÞ � mÞ

þ
Z
EI

swðthÞ � phIt � fv� vhg: ð5:14Þ
On the other hand, using that th ¼ rhuh � SðuhÞ þ G (cf. (2.24)) and that g = 0 in the present case, we

obtain Z Z
½Bhðuh; nhÞ; q� qh� ¼ �
X
ðq� qhÞI : ðth � GÞ ¼ �

X
ðq� qhÞtrðthÞ: ð5:15Þ
It follows from (5.14) and (5.15) that
½Fh; ðv� vh; 0; q� qhÞ� � ½Ahðuh; nh; phÞ; ðv� vh; 0; q� qhÞ�

¼
X
T2Th

Z
T

f þ div wðthÞ � rphð Þ � ðv� vhÞ þ
X
T2Th

Z
T
ðq� qhÞtrðthÞ �

Z
EI

swðthÞ � phIt � fv� vhg

�
Z
EI

asuht : sv� vhtþ
Z
EI

frhg � srht� b� fwðthÞ � phIgð Þ : sv� vht

þ
Z
ED

ðrh � wðthÞ þ phIÞ : ððv� vhÞ � mÞ þ
Z
ED

aðuh � mÞ : ððv� vhÞ � mÞ;
which, applying the Cauchy–Schwarz inequality, implies that
½Fh; ðv� vh; k� kh; q� qhÞ� � ½Ahðuh; nh; phÞ; ðv� vh; k� kh; q� qhÞ�j j 6 CgHðv; qÞ1=2;

with
Hðv; qÞ :¼
X
T2Th

h�2
T kv� vhk2½L2ðT Þ�2 þ

X
T2Th

kq� qhk
2
L2ðT Þ þ ka1=2fv� vhgk2½L2ðEI Þ�2

þ ka1=2sv� vhtk2½L2ðEI Þ�2�2 þ ka1=2ðv� vhÞ � mk2½L2ðEDÞ�2�2 :
Now, applying Lemma 4.2 (see also Lemma 3.1 in [7]) and the approximation property (4.2) (cf. Lemma

4.1), we obtain
ka1=2fv� vhgk2½L2ðEI Þ�2 þ ka1=2sv� vhtk2½L2ðEI Þ�2�2 þ ka1=2ðv� vhÞ � mk2½L2ðEDÞ�2�2

6 C
X
T2Th

hTkh�1ðv� vhÞk2½L2ðoT Þ�2 6 C
X
T2Th

kvk2½H1ðT Þ�2 ¼ Ckvk2½H1ðXÞ�2 :
Similarly, applying the approximation property (4.1) (cf. Lemma 4.1) and observing that

kq� qhkL2ðXÞ ¼ kq�PW hðqÞkL2ðXÞ 6 kqkL2ðXÞ, we get
X
T2Th

h�2
T kv� vhk2½L2ðT Þ�2 þ

X
T2Th

kq� qhk
2

L2ðT Þ 6 Ckvk2½H1ðXÞ�2 þ kqkL2ðXÞ:
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The last two inequalities and the fact that v 2 ½H 1
0ðXÞ�

2
show that H(v,q) is bounded above by

~Cconkðv; 0; qÞkLDG, where
~Ccon is a positive constant independent of the meshsize. This provides (5.9) and

finishes the proof. h

We are now in a position to establish the main result of this section.

Theorem 5.1. There exists a constant Crel > 0, independent of the meshsize, such that
kðt� th; r� rh; u� uh; n� nh; p � phÞk 6 Crel#; ð5:16Þ

where #2 :¼

P
T2Th

#2
T and the local error estimator #T is given by
#2
T :¼ g2T þ jT jj�phj

2 þ krh � wðthÞ þ phIk
2

½L2ðT Þ�2�2 ; ð5:17Þ
with �ph being the mean value of ph.

Proof. Since t = $u and th = $huh � S(uh) + S(u), we easily obtain, applying (2.23), that
kt� thk2½L2ðXÞ�2�2 6 2maxf1;C2
Sgkju� uhjk2h:
Also, replacing r by w(t) � pI, adding and substracting w(th) � phI, and then applying triangle inequality
and the Lipschitz-continuity of the nonlinear operator induced by w, we obtain
kr� rhk½L2ðXÞ�2�2 ¼ kwðtÞ � pI� wðthÞ � phIð Þ þ wðthÞ � phIð Þ � rhk½L2ðXÞ�2�2

6 C kt� thk½L2ðXÞ�2�2 þ kp � phkL2ðXÞ þ krh � wðthÞ þ phIk½L2ðXÞ�2�2

n o
:

It follows from the above inequalities that it remains to estimate kðu� uh; n� nh; p � phÞk
2
LDG. To this

end, we first let V?
0 be the orthogonal complement of V0 :¼ Vh \ ½H 1

0ðXÞ�
2
within Vh with respect to the

inner product inducing the norm ijÆijh, and recall from [20] that jÆjh and ijÆijh are equivalent on V?
0 with con-

stants independent of h. Hence, in what follows we write uh ¼ u0h þ u?h , with u0h 2 V0 and u?h 2 V?
0 . Also, we

write ph ¼ ph;0 þ �ph, with ph;0 2 L2
0ðXÞ and �ph 2 R.

A simple application of triangle inequality and the above mentioned equivalence between jÆjh and ijÆjih,
yields
kðu� uh; n� nh; p � phÞk
2

LDG 6 2 kðu� u0h; n� nh; p � ph;0Þk
2

LDG þ kju?h jk
2

h þ jXjj�phj
2

n o
6 c kðu� u0h; n� nh; p � ph;0Þk

2

LDG þ ju?h j
2

h þ jXjj�phj
2

n o
;

which, using that su?h t ¼ suht on EI and u?h ¼ uh on ED, becomes
kðu� uh; n� nh; p � phÞk
2
LDG 6 c kðu� u0h; n� nh; p � ph;0Þk

2
LDG þ juhj2h þ jXjj�phj

2
n o

: ð5:18Þ
Now, since p 2 L2
0ðXÞ we apply Lemma 5.1 to ðw; g; rÞ :¼ ðu� u0h; n� nh; p � ph;0Þ 2 ½H 1

0ðXÞ�
2�

R� L2
0ðXÞ, and deduce that there exists ðv; k; qÞ 2 ½H 1

0ðXÞ�
2 � R� L2

0ðXÞ such that
Ckðu� u0h; n� nh; p � ph;0Þk
2

LDG 6 DAhð~u; ~n; pÞððu� u0h; n� nh; p � ph;0Þ; ðv; k; qÞÞ ð5:19Þ
and
kðv; k; qÞkLDG 6 eCkðu� u0h; n� nh; p � ph;0ÞkLDG; ð5:20Þ
with C and eC > 0 independent of the meshsize.
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Then, setting vh ¼ PVhðvÞ 2 Vh; kh ¼ k 2 R, and qh ¼ PW hðqÞ 2 W h \ L20ðXÞ, we easily obtain
DAhð~u;~n;pÞððu� u0h;n� nh;p� ph;0Þ; ðv;k;qÞÞ ¼ DAhð~u;~n;pÞððu� uh;n� nh;p� phÞ; ðv;k;qÞÞ
þDAhð~u;~n;pÞððu?h ;0;�phÞ; ðv;k;qÞÞ

¼ DAhð~u;~n;pÞððu� uh;n� nh;p� phÞ; ðv� vh;0;q� qhÞÞ
þDAhð~u;~n;pÞððu� uh;n� nh;p� phÞ; ðvh;kh;qhÞÞ
þDAhð~u;~n;pÞððu?h ;0;�phÞ; ðv;k;qÞÞ;
which, applying (5.3), (4.7), and the definition of Ah (cf. (5.1)), becomes
¼ ½Ahðu; n; pÞ; ðv; k; qÞ� � ½Ahðuh; nh; phÞ; ðvh; kh; qhÞ� � ½Ahðuh; nh; phÞ; ðv� vh; 0; q� qhÞ�
þ DAhð~u; ~n; pÞððu?h ; 0; �phÞ; ðv; k; qÞÞ:
Since (uh, nh, ph) is the solution of (2.26) and ðv; k; qÞ 2 ½H 1
0ðXÞ�

2 � R� L2
0ðXÞ, we find, respectively,

that
½Ahðuh; nh; phÞ; ðvh; kh; qhÞ� ¼ ½Fh; ðvh; kh; qhÞ�

and
½Ahðu; n; pÞ; ðv; k; qÞ� ¼ ½Fh; ðv; k; qÞ�;
whence
DAhð~u;~n;pÞððu�u0h;n�nh;p�ph;0Þ;ðv;k;qÞÞ¼DAhð~u;~n;pÞððu?h ;0;�phÞ;ðv;k;qÞÞþ ½Fh;ðv� vh;0;q�qhÞ�
� ½Ahðuh;nh;phÞ;ðv� vh;0;q�qhÞ�:
Finally, the above expression is bounded above by applying Lemma 5.2, the uniform boundedness of

DAhð~u; ~n; pÞ, the equivalence between jÆjh and ijÆjih in V?
0 , and the estimate (5.20). The resulting terms are

replaced back into (5.19) and (5.18), thus completing the proof. We omit further details. h

6. Numerical results

In this section, we provide several numerical results illustrating the performance of the mixed LDG
method and the fully explicit a-posteriori error estimate #. We emphasize that the actual computations

are carried on the original discrete system (2.15) and not on the equivalent reduced one (2.26), which, as

explained before, was introduced just for theoretical reasons.

Hereafter, N is the number of degrees of freedom defining the subspace Rh � Vh � Rh � W h � R, that is

N :¼ Cj � ðnumber of triangles of ThÞ þ 1, with Cj = 15,39 for the P0 � P0 � P1 � P0 and

P1 � P1 � P2 � P1 approximations, respectively. In addition, the individual and global errors are defined

as follows
eðtÞ :¼ kt� thk½L2ðXÞ�2�2 ; ehðuÞ :¼ kj u� uhkjh; eðrÞ :¼ kr� rhk½L2ðXÞ�2�2 ;

eðpÞ :¼ kp � phkL2ðXÞ and e :¼ ½eðtÞ�2 þ ½ehðuÞ�2 þ ½eðrÞ�2 þ ½eðpÞ�2
n o1=2

;
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where ðth; uh; rh; ph; nhÞ 2 Rh � Vh � Rh � W h � R is the unique solution of the discrete scheme (2.15). Also,

if e and ~e stand for the error at two consecutive triangulations with N and ~N degrees of freedom, respec-

tively, then we define the associated experimental rate of convergence by
Table

Examp

N

91

361

5761

23041

92161

91

271

631

991

5011

13636

22321

52306

85216

91

181

361

451

1441

6841

14941

30826

64801
r :¼ �2
logðe=~eÞ
logðN=~NÞ

: ð6:1Þ
On the other hand, the adaptive algorithm used in the mesh refinement process, without hanging nodes, is

the following [26]:

1. Start with a coarse mesh Th.

2. Solve the discrete problem (2.15) for the actual mesh Th.
3. Compute #T for each triangle T 2 Th.

4. Evaluate stopping criterion and decide to finish or go to next step.

5. Use red–blue–green procedure to refine each T 0 2 Th whose error estimator #T 0 satisfies

#T 0 P 1
2
maxf#T : T 2 Thg.

6. Define resulting mesh as actual mesh Th and go to step 2.

The numerical results presented below were obtained in a Compaq Alpha ES40 Parallel Computer using a

MATLAB code. We remark that in the pure nonlinear case, the corresponding mixed LDG scheme (cf.
(2.15)), which becomes a nonlinear algebraic system with N unknowns, is solved by Newton–Raphson�s
method with the initial guess given by the solution of the associated linear Stokes problem, and setting

the tolerance in 10�3 for the relative error. In all cases we take the parameters ba ¼ 1 and b = (1,1)t in
6.1

le 1 with P0 � P0 � P1 � P0 approximation: uniform, red–blue–green, and red refinements

eh(u) e(t) e(r) e(p) # e/# r

27.7530 4.5119 8.6094 5.1848 104.5580 0.2856 –

81.5164 18.2308 30.1984 17.0232 300.2485 0.3012 –

61.3113 20.9879 24.0423 8.2928 151.1932 0.4604 0.5341

34.9934 12.5703 13.9487 4.2752 82.1369 0.4863 0.8016

19.2402 6.7162 7.4175 2.2261 44.6317 0.4885 0.8736

27.7530 4.5119 8.6094 5.1848 104.5580 0.2856 –

81.5063 18.2332 30.0414 16.8825 300.2306 0.3009 –

61.4417 20.9911 24.0254 8.2642 151.2558 0.4610 2.2073

23.5086 8.0024 9.0209 2.9443 53.1132 0.5005 4.2206

7.7918 2.5289 2.8891 0.9878 17.5121 0.4992 1.2401

4.7580 1.5850 1.8217 0.6350 10.9793 0.4894 0.9724

3.6281 1.2182 1.3953 0.4810 8.4037 0.4881 1.0957

2.3582 0.8008 0.9246 0.3269 5.5424 0.4829 1.0026

1.8248 0.6250 0.7164 0.2476 4.3067 0.4812 1.0482

27.7530 4.5119 8.6094 5.1848 104.5580 0.2856 –

81.2676 18.2260 30.0517 16.8955 300.3732 0.3001 –

61.2733 20.9934 23.9869 8.2052 151.3981 0.4594 2.5811

36.1299 13.1283 14.5617 4.4548 86.7567 0.4766 4.6732

14.3907 5.1411 5.6798 1.7073 34.7893 0.4712 1.2382

6.3317 2.1388 2.3950 0.7621 14.8890 0.4796 1.0490

4.2436 1.4197 1.5912 0.5081 9.9563 0.4797 1.0294

2.9866 0.9939 1.1213 0.3672 7.0034 0.4800 0.9701

2.0519 0.6803 0.7640 0.2458 4.8001 0.4804 1.0146



Table 6.2

Example 1 with P1 � P1 � P2 � P1 approximation: uniform, red–blue–green, and red refinements

N eh(u) e(t) e(r) e(p) # e/# r

235 25.8203 8.3819 13.2488 7.2551 106.6109 0.2914 –

937 76.7277 14.0911 23.8389 13.5966 301.5960 0.2742 –

3745 79.0125 14.8175 20.6097 10.1293 237.0900 0.3526 –

14977 36.4816 7.7792 9.2608 3.5529 94.4255 0.4088 1.1152

59905 10.7937 2.5907 2.8672 0.8686 27.1349 0.4237 1.7473

235 25.8203 8.3819 13.2488 7.2551 106.6109 0.2914 –

703 76.6581 14.0920 23.8200 13.5795 301.6019 0.2740 –

1639 36.5359 7.7802 9.2614 3.5526 94.4537 0.4092 4.5989

2107 11.0779 2.6417 2.9362 0.9063 27.9778 0.4216 9.4498

8035 1.4901 0.2517 0.2829 0.0913 2.6754 0.5757 1.5892

16732 0.6428 0.1099 0.1241 0.0407 1.1777 0.5648 2.2897

41692 0.2781 0.0435 0.0498 0.0173 0.4703 0.6090 1.7394

62323 0.1755 0.0273 0.0306 0.0098 0.2922 0.6178 2.2958

235 25.8203 8.3819 13.2488 7.2551 106.6109 0.2914 –

469 76.6090 14.1048 23.8151 13.5686 301.6354 0.2738 –

937 36.5155 7.7958 9.2642 3.5390 94.5687 0.4085 5.3744

2107 6.2777 1.5374 1.6880 0.4929 15.8892 0.4216 2.4275

4681 2.3065 0.5519 0.6094 0.1827 5.6086 0.4378 1.8943

7840 1.2740 0.2883 0.3206 0.0991 2.8517 0.4729 2.3237

12988 0.7608 0.1751 0.1922 0.0560 1.7232 0.4677 2.0399

20125 0.5138 0.1131 0.1240 0.0359 1.1099 0.4881 1.8143

32878 0.3149 0.0678 0.0732 0.0195 0.6576 0.5032 2.0084

51247 0.2050 0.0434 0.0468 0.0123 0.4205 0.5116 1.9407
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the corresponding dual formulation. In addition, we test our results considering both regular meshes and

meshes with hanging nodes, though the latter is not covered yet by the theory. In this case, our refinement

strategy is similar to the one described before, but instead of using the red–blue–green procedure in step 5,

we apply the red one.

We present two examples. In the first one, we consider the linear version of the boundary value problem

(1.1), that is the usual Stokes model, in the L-shaped domain X := (�1,1)2n[0,1]2, and choose the data f and

g so that the exact solution is given by
uðxÞ :¼ �
ffiffiffiffiffiffiffiffiffiffi
1000

p
e�

ffiffiffiffiffiffiffi
1000

p
ðx1þx2Þ;

ffiffiffiffiffiffiffiffiffiffi
1000

p
e�

ffiffiffiffiffiffiffi
1000

p
ðx1þx2Þ

� �
;

pðxÞ :¼ 2ex1 sinðx2Þ � 2
3
ðe� 1Þðcosð1Þ � 1Þ

8><>:

for all x := (x1,x2)

t 2 X. We notice that u is divergence free in X and presents an inner layer around the

origin.
The second example deals with the pure nonlinear case, where the kinematic viscosity function w is

given by the Carreau law, that is w(t) = j0 + j1(1 + t2)(b� 2)/2. It is easy to check that w satifies (1.2)

and (1.3) for all j0,j1 > 0, and for all b 2 [1,2]. Note that the usual linear Stokes model is obtained with

b = 2. In this example, we take j0 = j1 = 1/2 and b = 3/2, whence wðtÞ :¼ 1
2
þ 1

2
ð1þ t2Þ�1=4

. In addition, we

consider again the L-shaped domain X := (�1,1)2n[0,1]2, and choose f and g so that the exact solution is

given by



Table 6.3

Example 2 with P0 � P0 � P1 � P0 approximation: uniform, red–blue–green, and red refinements

N eh(u) e(t) e(r) e(p) # e/# r

91 9.2999 2.0266 2.6848 1.5977 24.0305 0.4169 –

361 7.7723 2.2596 2.3950 1.2706 18.4319 0.4631 0.2323

1441 6.6210 2.1460 1.8748 0.8721 13.8864 0.5229 0.2338

5761 5.5502 1.9470 1.4139 0.5316 10.6885 0.5681 0.2579

23041 4.0926 1.6475 1.0679 0.3190 7.2802 0.6250 0.4164

91 9.2999 2.0266 2.6848 1.5977 24.0305 0.4169 0.4030

151 7.6738 2.2881 2.5494 1.3567 19.1942 0.4435 0.6431

1441 6.0212 2.0920 1.6023 0.6301 12.1643 0.5428 0.3432

2521 4.0010 1.6850 1.4065 0.6498 7.8272 0.5889 1.8819

5476 1.9541 0.8959 0.8945 0.4484 4.0282 0.5886 1.1239

14311 1.2336 0.5882 0.5500 0.2618 2.5071 0.5968 0.9586

30286 0.8324 0.4209 0.3819 0.1720 1.7441 0.5863 1.0157

58306 0.6252 0.3041 0.2717 0.1218 1.2784 0.5916 0.9207

91 9.2999 2.0266 2.6848 1.5977 24.0305 0.4169 –

136 7.8666 2.3018 2.5023 1.3009 19.5785 0.4427 0.7203

1036 6.2889 2.2420 1.8157 0.7571 12.7759 0.5448 0.3240

1576 4.5476 1.9310 1.6943 0.7919 8.7614 0.6030 1.8744

1801 3.7327 1.6846 1.6247 0.8088 7.6311 0.5870 2.4720

2566 3.0437 1.4010 1.3076 0.6200 5.8273 0.6263 1.1571

9271 1.7748 0.7662 0.6885 0.3130 3.1381 0.6615 0.8856

16741 1.3377 0.5519 0.4940 0.2204 2.3413 0.6598 0.9998

31411 0.9979 0.4150 0.3614 0.1546 1.7145 0.6708 0.9379

57376 0.7468 0.3000 0.2623 0.1120 1.2706 0.6720 0.9885
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uðxÞ :¼ ðx1 � 0:01Þ2 þ ðx2 � 0:01Þ2
h i�1=2

ðx2 � 0:01; 0:01� x1Þ;

pðxÞ :¼ 1
1:1�x1

� 1
3
ln 441

11

� �
8<:
for all x := (x1,x2)
t 2 X. We observe here that u is divergence free in X and singular in an exte-

rior neighborhood of (0,0). In addition, p is singular in an exterior neighborhood of the segment

{1} · [0,1].

In Tables 6.1–6.4, we summarize the individual errors, the error estimate #, the effectivity index e/#,
and the corresponding experimental rates of convergence for the uniform and adaptive refinements asso-

ciated to Examples 1 and 2 with P0 � P0 � P1 � P0 and P1 � P1 � P2 � P1 approximations. The errors

on each triangle were computed applying a 7 points Gaussian quadrature rule. We notice that the effec-

tivity indexes are bounded above and below, which confirm the reliability of #, and provide numerical

evidences for their efficiency, even in the case of irregular meshes. In addition, Figs. 6.1–6.4 display
the global errors e, erbg, and er, corresponding to the uniform, red–blue–green, and red refinements,

respectively, versus the degrees of freedom N. In all cases the errors of the adaptive methods decrease

much faster than those of the uniform ones, which is emphasized by the experimental rates of conver-

gence provided in Tables 6.1–6.4, showing that the adaptive algorithms recover O(h) and O(h2) for

P0 � P0 � P1 � P0 and P1 � P1 � P2 � P1, respectively. Equivalently, as observed from the definition



Table 6.4

Example 2 with P1 � P1 � P2 � P1 approximation: uniform, red–blue–green, and red refinements

N eh(u) e(t) e(r) e(p) # e/# r

235 11.2569 1.3855 2.5978 1.6797 19.4592 0.6041 –

937 8.0976 1.2593 1.4422 0.8134 13.2850 0.6293 0.4929

3745 5.8418 1.1927 1.0402 0.5114 9.8167 0.6187 0.4612

14977 4.5820 1.1203 0.7805 0.3071 7.6189 0.6288 0.3423

59905 3.1715 0.9091 0.5735 0.1874 4.7975 0.6991 0.5145

235 11.2569 1.3855 2.5978 1.6797 19.4592 0.6041 –

391 7.7162 1.3267 1.9996 1.2351 14.2108 0.5752 1.4273

2965 5.4469 1.2465 1.0177 0.4753 9.5063 0.5996 0.3364

4369 4.5954 1.0963 0.8193 0.3499 7.5857 0.6338 0.8780

6826 1.9690 0.6159 0.4188 0.1580 2.6850 0.7863 4.9650

8464 1.1428 0.2966 0.2538 0.1205 1.6572 0.7323 5.1478

12910 0.4847 0.1622 0.1342 0.0591 0.7527 0.7064 3.9094

35608 0.1745 0.0572 0.0473 0.0207 0.2692 0.7086 2.3166

55420 0.1286 0.0394 0.0333 0.0142 0.1871 0.7446 1.4201

235 11.2569 1.3855 2.5978 1.6797 19.4592 0.6041 –

1288 6.5150 1.3518 1.3646 0.7214 11.3569 0.6014 0.3359

3160 3.5570 1.0168 0.8412 0.3877 6.5021 0.5865 3.7560

5617 1.3036 0.3821 0.3174 0.1407 1.9539 0.7176 3.9263

7957 0.8613 0.3030 0.2504 0.1080 1.3152 0.7245 2.2179

14041 0.5171 0.1569 0.1295 0.0566 0.7749 0.7208 1.8812

23635 0.2992 0.1059 0.0834 0.0344 0.4531 0.7282 2.0220

33346 0.2023 0.0655 0.0531 0.0220 0.3055 0.7211 2.3469

49843 0.1463 0.0462 0.0370 0.0152 0.2082 0.7615 1.6377

Fig. 6.1. Example 1 with P0 � P0 � P1 � P0 approximation: global error e for the uniform and adaptive refinements.
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of r (cf. (6.1)), the slope of the curves displayed in Figs. 6.1–6.4, measured every two consecutive points,

is given by �r/2.

Next, Figs. 6.5–6.8 display some intermediate meshes obtained with the different refinements. As ex-

pected, the adaptive algorithms are able to recognize the inner layer of Example 1 and the singularities

of u and p in Example 2. In addition, we notice that the good behaviour of the red refinement (with



Fig. 6.4. Example 2 with P1 � P1 � P2 � P1 approximation: global error e for the uniform and adaptive refinements.

Fig. 6.3. Example 2 with P0 � P0 � P1 � P0 approximation: global error e for the uniform and adaptive refinements.

Fig. 6.2. Example 1 with P1 � P1 � P2 � P1 approximation: global error e for the uniform and adaptive refinements.
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Fig. 6.5. Example 1 with P0 � P0 � P1 � P0 approximation, without hanging nodes: adapted intermediate meshes with 5011, 13636,

22321 and 52306 degrees of freedom.
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Fig. 6.6. Example 1 with P0 � P0 � P1 � P0 approximation, with hanging nodes: adapted intermediate meshes with 6841, 14941,

30826 and 64801 degrees of freedom.
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Fig. 6.7. Example 2 with P1 � P1 � P2 � P1 approximation, without hanging nodes: adapted intermediate meshes with 6826, 12910,

35608 and 55420 degrees of freedom.
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Fig. 6.8. Example 2 with P1 � P1 � P2 � P1 approximation, with hanging nodes: adapted intermediate meshes with 5617, 14041,

23635 and 49843 degrees of freedom.
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hanging nodes) give us numerical evidences that our results are still valid on this kind of meshes. In

particular, we observe that the red refinement is more localized around the singularities than the

red–blue–green one.
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